0%

浮点数你应该知道的基础知识

作者:卢钧轶(cenalulu) 本文原文地址:http://cenalulu.github.io/linux/about-denormalized-float-number/

本文从一个有趣而又令人意外的实验展开,介绍一些关于浮点数你应该知道的基础知识

一个有趣的实验

本文从一个有趣而诡异的实验开始。最早这个例子博主是从 Stackoverflow上的一个问题中看到的。
为了提高可读性,博主这里做了改写,简化成了以下两段代码:

#include <iostream>
#include <string>
using namespace std;

int main() {
    const float x=1.1;
    const float z=1.123;
    float y=x;
    for(int j=0;j<90000000;j++)
    {
        y*=x;
        y/=z;
        y+=0.1f;
        y-=0.1f;
    }
    return 0;
}


#include <iostream>
#include <string>
using namespace std;

int main() {
    const float x=1.1;
    const float z=1.123;
    float y=x;
    for(int j=0;j<90000000;j++)
    {
        y*=x;
        y/=z;
        y+=0;
        y-=0;
    }
    return 0;
}

上面两段代码的唯一差别就是第一段代码中y+=0.1f,而第二段代码中是y+=0。
由于y会先加后减同样一个数值,照理说这两段代码的作用和效率应该是完全一样的,当然也是没有任何逻辑意义的。
假设现在我告诉你:其中一段代码的效率要比另一段慢7倍。想必读者会认为一定是y+=0.1f的那段慢,毕竟它和y+=0相比看上去要多一些运算。
但是,实验结果,却出乎意料, y+=0的那段代码比y+=0.1f足足慢了7倍。
世界观被颠覆了有木有?博主是在自己的Macbook Pro上进行的测试,有兴趣的读者也可以在自己的笔记本上试试。
(只要是支持SSE2指令集的CPU都会有相似的结果)。

shell> g++ code1.c -o test1
shell> g++ code2.c -o test2
shell> time ./test1

real    0m1.490s
user    0m1.483s
sys     0m0.003s

shell> time ./test2

real    0m9.895s
user    0m9.871s
sys     0m0.009s

当然 原文中的投票最高的回答解释的非常好,但博主第一次看的时候是一头雾水,因为大部分基础知识已经还给大学老师了。
所以,本着知其然还要知其所以然的态度,博主做了一个详尽的分析和思路整理过程。也希望读者能够从0开始解释这个诡异现象的原因。

复习浮点数的二进制转换

现在让我们复习大学计算机基础课程。
如果你熟练掌握了浮点数向二进制表达式转换的方法,那么你可以跳过这节。
我们先来看下浮点数二进制表达的三个组成部分。

mmap

三个主要成分是:

  • Sign(1bit):表示浮点数是正数还是负数。0表示正数,1表示负数
  • Exponent(8bits):指数部分。类似于科学技术法中的M*10^N中的N,只不过这里是以2为底数而不是10。
    需要注意的是,这部分中是以2^7-1即127,也即01111111代表2^0,转换时需要根据127作偏移调整。
  • Mantissa(23bits):基数部分。浮点数具体数值的实际表示。

下面我们来看个实际例子来解释下转换过程。

  • Step 1 改写整数部分 以数值5.2为例。先不考虑指数部分,我们先单纯的将十进制数改写成二进制。 整数部分很简单,5.101.
  • Step 2 改写小数部分 小数部分我们相当于拆成是2^-1一直到2^-N的和。
    例如: 0.2 = 0.125+0.0625+0.007825+0.003906252^-3+2^-4+2^-7+2^-8....,也即.00110011001100110011
  • Step 3 规格化 现在我们已经有了这么一串二进制101.00110011001100110011
    然后我们要将它规格化,也叫Normalize。其实原理很简单就是保证小数点前只有一个bit。
    于是我们就得到了以下表示:1.0100110011001100110011 * 2^2
    到此为止我们已经把改写工作完成,接下来就是要把bit填充到三个组成部分中去了。
  • Step 4 填充 指数部分(Exponent):之前说过需要以127作为偏移量调整。
    因此2的2次方,指数部分偏移成2+127即129,表示成10000001填入。
    整数部分(Mantissa):除了简单的填入外,需要特别解释的地方是1.010011中的整数部分1在填充时被舍去了。
    因为规格化后的数值整部部分总是为1。
    那大家可能有疑问了,省略整数部分后岂不是1.0100110.010011就混淆了么?
    其实并不会,如果你仔细看下后者:会发现他并不是一个规格化的二进制,可以改写成1.0011 * 2^-2
    所以省略小数点前的一个bit不会造成任何两个浮点数的混淆。 具体填充后的结果见下图

mmap

练习:如果想考验自己是否充分理解这节内容的话,可以随便写一个浮点数尝试转换。通过 浮点二进制转换工具可以验证答案。

什么是Denormalized Number

了解完浮点数的表达以后,不难看出浮点数的精度和指数范围有很大关系。
最低不能低过2^-7-1最高不能高过2^8-1(其中剔除了指数部分全0和全1的特殊情况)。
如果超出表达范围那么不得不舍弃末尾的那些小数,我们成为overflow和underflow。
甚至有时舍弃都无法表示,例如当我们要表示一个:1.00001111*2^-7这样的超小数值的时候就无法用规格化数值表示,
如果不想点其他办法的话,CPU内部就只能把它当做0来处理。
那么,这样做有什么问题呢?最显然易见的一种副作用就是:当多次做低精度浮点数舍弃的后,就会出现除数为0的exception,导致异常。
当然精度失准严重起来也可以要人命,以下这个事件摘自wikipedia

On 25 February 1991, a loss of significance in a MIM-104 Patriot missile battery prevented 
it intercepting an incoming Scud missile in Dhahran, Saudi Arabia, 
contributing to the death of 28 soldiers from the U.S. 
Army’s 14th Quartermaster Detachment.[25] See also: Failure at Dhahran

于是乎就出现了Denormalized Number(后称非规格化浮点)
他和规格浮点的区别在于,规格浮点约定小数点前一位默认是1。而非规格浮点约定小数点前一位可以为0
这样小数精度就相当于多了最多2^22范围。

但是,精度的提升是有代价的。由于CPU硬件只支持,或者默认对一个32bit的二进制使用规格化解码。
因此需要支持32bit非规格数值的转码和计算的话,需要额外的编码标识,也就是需要额外的硬件或者软件层面的支持。
以下是wiki上的两端摘抄,说明了非规格化计算的效率非常低。
一般来说,由软件对非规格化浮点数进行处理将带来极大的性能损失,而由硬件处理的情况会稍好一些,
但在多数现代处理器上这样的操作仍是缓慢的。极端情况下,规格化浮点数操作可能比硬件支持的非规格化浮点数操作快100倍。

For example when using NVIDIA’s CUDA platform, on gaming cards, 
calculations with double precision take 3 to 24 times longer to complete than calculations using single precision.

如果要解释为什么有如此大的性能损耗,那就要需要涉及电路设计了,超出了博主的知识范围。
当然万能的wiki也是有答案的,有兴趣的读者可以自行查阅。

回到实验

总上面的分析中我们得出了以下结论:

  • 浮点数表示范围有限,精度受限于指数和底数部分的长度,超过精度的小数部分将会被舍弃(underflow)
  • 为了表示更高精度的浮点数,出现了非规格化浮点数,但是他的计算成本非常高。
  • 于是我们就可以发现通过几十上百次的循环后,y中存放的数值无限接近于零。
    CPU将他表示为精度更高的非规格化浮点。
    而当y+0.1f时为了保留跟重要的底数部分,之后无限接近0(也即y之前存的数值)被舍弃,当y-0.1f后,y又退化为了规格化浮点数。
    并且之后的每次y*xy/z时,CPU都执行的是规划化浮点运算。
    而当y+0,由于加上0值后的y仍然可以被表示为非规格化浮点,因此整个循环的四次运算中CPU都会使用非规格浮点计算,效率就大大降低了。

其他

当然,也有在程序内部也是有办法控制非规范化浮点的使用的。
在相关程序的上下文中加上fesetenv(FE_DFL_DISABLE_SSE_DENORMS_ENV);
就可以迫使CPU放弃使用非规范化浮点计算,提高性能。
我们用这种办法修改上面实验中的代码后,y+=0的效率就和y+=0.1f就一样了。
甚至还比y+=0.1f更快了些,世界观又端正了不是么:) 修改后的代码如下

#include <iostream>
#include <string>
#include <fenv.h>
using namespace std;

int main() {
    fesetenv(FE_DFL_DISABLE_SSE_DENORMS_ENV);
    const float x=1.1;
    const float z=1.123;
    float y=x;
    for(int j=0;j<90000000;j++)
    {
        y*=x;
        y/=z;
        y+=0;
        y-=0;
    }
    return 0;
}

Reference

什么是非规格化浮点数
Why does changing 0.1f to 0 slow down performance by 10x? IEEE floating point Floating point Denormal number